The Fill Rate

Suzanne de Treville

Service Level Review

- Service level: probability that all demand satisfied in a given period
- ▶ We have 99 units in stock and demand was 100:
 - We did not satisfy all demand: We stocked out by 1 unit
 - ▶ We satisfied (filled) 99% of the demand that period
- ▶ 100 periods, in stock 90 periods (10 periods where we stocked out) \Rightarrow 90% service level
- ► The newsvendor model calculates the target service level, so operations people think in terms of that measure
- ▶ Marketing people do not. They think in terms of the fill rate

The Fill Rate

- ▶ Demand is 100
- ▶ We have 99 units in stock
- We satisfy 99% of the demand
- ▶ So the fill rate is 99%
- ▶ If we have a 99% fill rate 3 periods and a 100% fill rate 7 periods, we achieve a service level of 70%

Fill Rate Formula for the Lognormal Distribution

- ▶ Inputs $z = \Phi^{-1}$ (service level) and σ
- Fill rate $FR = \Phi(z \sigma) + e^{z\sigma \frac{\sigma^2}{2}}(1 \Phi(z))$
- ▶ 3 subparts:
 - $ightharpoonup = \Phi(z \sigma)$
 - $ightharpoonup e^{z\sigma-\frac{\sigma^2}{2}}$
 - \blacktriangleright $(1 \Phi(z))$

Expected Sales and Leftover Inventory

- ▶ Expected sales $\mathbb{E}(S) = \mathbb{E}(D) \times FR$
- ▶ $\mathbb{E}(D) = 1000$ units, $FR = 90\% \Rightarrow \mathbb{E}(S) = 900$ units
- ▶ If we order Q=1100 units, then our expected leftover inventory $\mathbb{E}(LOI)=Q-\mathbb{E}(S)=1100-900=200$ units

Calculating Expected Profit as a Multiple of Median Demand for the Lognormal Distribution

- From σ we calculate $\mathbb{E}(D) = e^{\sigma^2/2}$
- From overage and underage costs we calculate the newsvendor critical fractile
- ► From the critical fractile we calculate the order quantity z in standard deviations $z = \Phi^{-1}$ (critical fractile)
- > z and σ give us the order quantity as a multiple of median demand $e^{z\sigma}$ and in units $Q=e^{\mu}e^{z\sigma}$
- From z and σ we calculate the fill rate FR
- $ightharpoonup \mathbb{E}(S) = \mathbb{E}(D) \times FR$
- $\triangleright \mathbb{E}(LOI) = Q \mathbb{E}(S)$

Expected Profit per Unit of Median Demand

- ▶ Price p, cost c, residual value s
- ▶ Expected profit = $\mathbb{E}(S)(p-c) \mathbb{E}(LOI)(c-s)$

